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LONGITUDINAL WAVES IN GRAINY MEDIA

UDC 532.536Yu. A. Berezin1 and L. A. Spodareva2

Based on a hypoplastic model of media with dilatancy, a nonlinear inhomogeneous wave equation
describing compression waves in soil is derived, and its solution is analyzed.

The study of propagation laws of seismic waves in soil allows one to obtain more complete information
on mechanical properties of grainy media. The construction of soil models is generally based on the concepts of
mechanics of continuous media, which implies averaging of the kinematic and dynamic characteristics of grains over
physically infinitesimal volumes, i.e., volumes that are sufficiently small in comparison with characteristic spatial
scales of the processes studied but contain a large number of grains. The balance law of momentum for all models
is written identically:

ρv̇i =
∂σij
∂xj

(i, j = 1, 2, 3).

Here ρ is the medium density, vi is the component of the velocity vector v, σij is the stress tensor, and xi are the
Cartesian coordinates; the dot indicates the material derivative d/dt = ∂/∂t + vj∂/∂xj ; summation is performed
over repeated indices. It is necessary to introduce a dependence between stresses and strains (or strain rates), in
addition to the above equations, in order to obtain a closed mathematical model. Such coupling is known as a
constitutive equation or a closing relation.

The simplest constitutive equation is the Hooke’s law σ = σ(ε). It is seen from this equation that the stress
is independent of the loading path and deformation history. Materials and media that can be described by this
kind of relations are called elastic. They are studied by the theory of elasticity. Numerous field and laboratory
observations show that soils are not elastic; therefore, closing relations should be different.

In early 1950s, Truesdell introduced a constitutive equation in the form of a dependence between instanta-
neous stresses and strains, which is written as an evolution equation relating the stress rates and strain rates in the
medium dσ = f(dε) [or σ̇ = f(ε̇), where ε̇ij ≡ Dij = (∂vi/∂xj +∂vj/∂xi)/2 is the stretching tensor]. The derivative
dσ/dε characterizes the stiffness of the material considered. Soils are inelastic (plastic) media, and their stiffness is
much higher under unloading than under loading. The closing relations derived by Trusdell and called hypoelastic
may be written in the generic form σ̇ = h(σ,D), where the function h is linear in terms of the functions σ and D.
A medium is hypoelastic if the stress-rate tensor is a linear function of the stress-rate tensor at every point and
every moment of time. This function, in turn, may depend linearly on the stress tensor [1, 2].

Constructing the model usually involves the derivative of the stress tensor in time, which vanishes when the
material, as a solid body, rotates in a fixed coordinate system. Such a derivative is named the Jaumann derivative
and has the form

σ0
ij =

dσij
dt

+ (σΩ)ij − (Ωσ)ij ,

where Ωij = (∂vi/∂xj − ∂vj/∂xi)/2 is the spin tensor. Thus, a hypoelastic medium is described by the following
incremental law:

dσij
dt

= −(σΩ)ij + (Ωσ)ij + Lijkl(σ)Dij .

1Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosi-
birsk 630090. 2Novosibirsk Military Institute, Novosibirsk 630117. Translated from Prikladnaya Mekhanika i
Tekhnicheskaya Fizika, Vol. 42, No. 2, pp. 148–152, March–April, 2001. Original article submitted September 14,
2000.

316 0021-8944/01/4202-0316 $25.00 c© 2001 Plenum Publishing Corporation



Here Lijkl is a tensor function, which, in the general case, may linearly depend on the components of the stress
tensor. For the simplest hypoelastic isotropic medium, this function can be written in the form Lijkl = λδijδkl +
µ(δikδjl + δilδjk), where λ and µ are the Lamé coefficients.

It follows from the last equation that the stiffness of a material is the same both under loading and unloading.
Therefore, the constitutive equations for a hypoelastic medium are not suitable for the description of soils, which
possess the property of plasticity and whose stiffness is smaller under loading than under unloading. Sometimes,
this problem can be solved using two different relations between σ̇ and ε̇, one of them is chosen for sections of
medium loading and the second one is for sections of unloading. As an example, we can write closing relations
in the one-dimensional case (u = v1 and x = x1) for small loading and unloading of the elastic medium in finite
increments ∆σ = µs∆ε or in the differential form σt = µsux, where the subscript x denotes differentiation over the
coordinate, the stiffness is µs = µ1 under loading (∆σ < 0) or µs = µ2 under unloading (∆σ > 0), where µ2 > µ1.
If we denote ν1 = (µ2 + µ1)/2 and ν2 = (µ2 − µ1)/2, then the above differential equations can be presented in the
form of one equation σt = ν1ux + ν2|ux|, which is valid both for loading and unloading. This equation contains the
absolute value of the derivative of the medium velocity over the coordinate and because of this, it is nonlinear even
in the small. We note that the procedure described is known in computational mathematics and is used for formal
transition from two-point to three-point grid equations with further application of the sweep method.

This approach is currently used to describe grainy media, in particular, sands [1–5]. The constitutive equation
of a hypoelastic medium can be written in the general form as

dσij
dt

= −(σΩ)ij + (Ωσ)ij + Lijkl(D, e)Dij +Nij(D, e)‖D‖,

where e = (V −Vs)/Vs is the porosity of the medium (Vs is the volume of the solid phase and V is the total volume),
‖D‖ =

√
tr (D2) is the norm of the strain-rate tensor, and L and N are some tensor functions of the indicated

arguments, which have different presentations including constants that characterize the material properties.
To study compression waves in grainy media, we chose the mathematical model [4], in which the changes

in porosity are neglected. This model includes the equations of motion and incremental coupling of stresses and
strains

ρ
dvi
dt

=
∂σij
∂xj

; (1)

dσij
dt

= −(σΩ)ij + (Ωσ)ij + f1(σ)Dij + f2(σ)σijtr (σD) + ϕij‖D‖. (2)

Here f1(σ) = C1tr (σ), f2(σ) = C2/tr (σ), ϕij(σ) = (C3(σ2)ij + C4(σ∗2)ij)/tr (σ) + (C5(σ3)ij + C6(σ∗3ij ))/tr (σ2),
and σ∗ij = σij − (1/3)tr (σ)δij (C1, . . . , C6 are empirical constants determined from test experiments in combination
with solving the constitutive equation). This procedure is called calibration.

The presence of the term proportional to the norm of the strain-rate tensor in (2) makes the considered
hypoelastic model nonlinear even in the small, because it does not admit linearization in the vicinity of ‖D‖ = 0.

Let us examine one-dimensional longitudinal movements of the hypoelastic media. We assume that the
sought functions depend only on one coordinate, for example, x, and on the time t. We can consider that stress
deviations from the initial values are small (‖σ − σ0‖ � ‖σ0‖), the axes x, y, and z coincide with the main axes
of the stress tensor, and the initial stressed state σ0 is uniform and hydrostatic. The velocity vector has only the
x-component: v = (u, 0, 0). Then, we obtain the following equation for the longitudinal component of the material
velocity of the medium:

utt − c2puxx = b|ux|x. (3)

Here, the coefficient cp, which has the dimension of velocity and depends on the undisturbed stressed state, is
determined by the formula c2p = (C1tr (σ0) + C2(σ0

xx)2/tr (σ0))/ρ and may be called the velocity of longitudinal
waves. The coefficient b, which has the dimension of velocity squared, characterizes the nonlinear and dilatant
properties of the medium, depends on the characteristics of the undisturbed state, and equals

b = (1/ρ){(σ0
xx + σ0

yy + σ0
zz)
−1[C3(σ0

xx)2 + C4(σ0
xx − tr (σ0)/3)2]

+ [(σ0
xx)2 + (σ0

yy)2 + (σ0
zz)

2]−1[C5(σ0
xx)3 + C6(σ0

xx − tr (σ0)/3)3]}.
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This coefficient can be positive as well as negative depending on the initial stress σ0 and on the model constants
C3, . . . , C6.

Equation (3) is a uniform wave equation with a nonlinear source. Let us assume that the undisturbed
stressed state is isotropic: σ0

xx = σ0
yy = σ0

zz ≡ σ0. Then, the expressions for the longitudinal-wave velocity and
the parameter b are significantly simplified: c2p = (3C1 + C2/3)σ0/ρ and b = (C3 + C5)σ0/(3ρ). Let us study the
properties of compression waves. We factorize the wave operator

∂2

∂t2
− c2p

∂2

∂x2
=
( ∂
∂t
− cp

∂

∂x

)( ∂
∂t

+ cp
∂

∂x

)
and choose a wave propagating in the positive direction of the x axis, using the approximate approach described,
for example, in [6]. For an arbitrary wave profile propagating toward x > 0 with a velocity approximately equal
to U , the derivatives over x and t are coupled by the relation ∂/∂t ≈ −U∂/∂x. This may be used to analyze the
features of wave packets consisting of waves propagating with different velocities. To identify the wave moving
in the positive direction of the x axis and described by the operator ∂/∂t + cp∂/∂x, we perform the substitution
∂/∂t ≈ −cp∂/∂x in the operator ∂/∂t− cp∂/∂x, which corresponds to the wave propagating in the direction x < 0.
As a result, we obtain the equation

−2cp
∂

∂x

(∂u
∂t

+ cp
∂u

∂x

)
= b

∂

∂x

∣∣∣∂u
∂x

∣∣∣.
Integration of this equation over the coordinate yields the first-order equation for the longitudinal wave:

ut + cpux +
b

2cp
|ux| = 0. (4)

The presence of the modulus of the material-velocity derivative over the coordinate makes this equation nonlinear
even in the small. Analyzing Eq. (4), we can note that, if we have ux > 0 everywhere, then the indicated equation
takes the form ut + (cp + b/(2cp))ux = 0, which corresponds to the transfer of the sought function in the positive
direction of the x axis with a velocity c1 = cp + b/(2cp). If we have ux < 0 everywhere, then Eq. (4) reduces to the
form ut + (cp− b/(2cp))ux = 0, which corresponds to the transfer of the sought function in the direction x > 0 with
a velocity c2 = cp − b/(2cp).

The initial condition for the numerical solution of Eq. (4) is the spatially localized distribution

u(x, 0) = u0 exp [−(x− x0)2/l2]; (5)

the boundary conditions are accepted in the form

lim
x→±∞

u(x, t) = 0. (6)

This pulse is symmetric with respect to the point x0. The derivative ux of the initial function (5) changes its sign at
x = x0, Therefore, the perturbation profile changes with time, because sections with a positive derivative move with
the velocity c1 and those with a negative derivative, with the velocity c2 > c1. The solution in Fig. 1 shows that
the perturbation amplitude decreases with time (the greater the parameter b, the faster the decrease in amplitude),
and the pulse completely decays. If we change the sign of this parameter, the evolution character also changes:
profile sections with a positive derivative propagate with the velocity c′1 = cp − |b|/(2cp) and those with a negative
derivative, with the velocity c′2 = cp+ |b|/(2cp), where c′2 > c′1. Therefore, the fore front of the perturbation, where
ux < 0, leads the rare front, where ux > 0, and the pulse expands, retaining the amplitude unchanged (Fig. 2).

Let us consider the solutions of the wave equation (3), which describes the propagation of compression waves
both in the positive and negative directions of the x axis. First, changing the sign of the coordinate x → −x is
equivalent to changing the sign of the parameter b → −b. Assuming that b > 0, we obtain c1 − c2 = b/cp > 0,
whence it follows that the sections of the perturbation profile with ux > 0 propagate faster than the sections with
ux < 0. This should lead to distortion of the profiles of compression waves propagating over the medium. We also
note that Eq. (3) remains unchanged with simultaneous changing of the signs x→ −x and b→ −b. Therefore, the
solutions corresponding to negative values of the parameter b are the mirror reflection around the points x = x0 of
the solutions corresponding to positive values of this coefficient. Let us choose an initial disturbance in the form
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Fig. 1 Fig. 2

Fig. 3 Fig. 4

of a spatially localized pulse (5), setting additionally ut(x, 0) = 0 and the boundary conditions (6). The condition
ut(x, 0) = 0 corresponds to the choice of the initial stress disturbance σxx satisfying the condition ∂σxx(x, 0)/∂x = 0
for all values of x. It follows from the calculations that such an initial perturbation generates wave motion in both
directions of the x axis, whose patterns are not symmetrical (Fig. 3). The parameter b is chosen positive; thus,
for comparatively small times, the pulse moving left changes as it follows from the transfer equation (4) for b < 0:
the pulse amplitude remains constant, and its width increases. The amplitude of the pulse moving to the right
decreases tending to zero. At large times, only the pulse moving to the left remains, which is accompanied by the
“tail” of a small amplitude with the opposite sign, which expands to the right (Fig. 4). The further evolution can
be investigated only using nonlinearalized equations (1), (2).
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